Changes between Version 2 and Version 3 of EwEugCapabilitiesAndLimitations


Ignore:
Timestamp:
2010-11-24 00:57:02 (13 years ago)
Author:
shermanl
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • EwEugCapabilitiesAndLimitations

    v2 v3  
    9090In a number of case studies, Ecosim users have treated the model as though it were a single-species assessment tool, varying its parameters so as to fit time series data for a particular species, (e.g., yellowfin tuna in the Eastern Pacific, herring in southern British Columbia). In such cases, it generally turns out that the biomass dynamics or delay-difference 'submodel' for the target species behaves quite similarly when 'embedded' in Ecosim (with explicit accounting for production and mortality rate as function of food resources and predators) to the corresponding single-species assessment model where competition effects are represented as implicit functions of stock size, (e.g., stock recruitment model) and predation mortality rates are assumed constant. 
    9191 
    92 So if one has an Ecosim model whose 'production' parameters have been estimated by fitting the model to single-species data, and a corresponding single-species model also fitted to the data, one should not be surprised that the two approaches usually give about the same answers to policy questions related to changing fishing mortality rate for the species, (e.g., fishing rates for MSY). Ecosim models may diverge from the single-species predictions at very low stock sizes (Ecosim may predict 'delayed depensation' effects due to changes in predation rates on juveniles), but otherwise do not generally lead us to interpret the single-species data any differently with respect to single-species assessment issues, (e.g., MSY) than if we just used the single-species model. 
     92So if one has an Ecosim model whose 'production' parameters have been estimated by fitting the model to single-species data, and a corresponding single-species model also fitted to the data, one should not be surprised that the two approaches usually give about the same answers to policy questions related to changing fishing mortality rate for the species, (e.g., fishing rates for MSY).  Ecosim models may diverge from the single-species predictions at very low stock sizes (Ecosim may predict 'delayed depensation' effects due to changes in predation rates on juveniles), but otherwise do not generally lead us to interpret the single-species data any differently with respect to single-species assessment issues, (e.g., MSY) than if we just used the single-species model. 
    9393 
    9494Thus, it would be wrong when applying Ecosim for single-species harvest policy analysis to contend that Ecosim is 'better' than a single-species model, when both give the same answer. It may comfort us to know as biologists that the Ecosim representation has somehow explained production in terms of ecosystem relationships rather than implicit relationships on stock size, but making biologists 'feel better' should not be a criterion for judging the effectiveness of a policy tool. When fitting Ecosim to the data we encounter the same risks as in single-species assessment of incorrect biomass estimation, misinterpretation of trend data, (e.g., hyperstability of catch per effort data), and failure to account for persistent effects such as environmental regime changes or confounding of these effects with the effects of fishing.