Wikiprint Book

Title: EwEugAssignHabitats

Subject: Ecopath Developer Site - EwEugAssignHabitats

Version: 2

Date: 2025-02-05 10:51:08

Table of Contents

10.5 Assign habitats

10.5 Assign habitats

Once habitats have been defined (see <u>Define Ecospace habitats</u>), (and sketched onto the <u>Basemap</u>), the components of the underlying Ecopath model must be assigned to their 'preferred' habitat. 'Preferred' here means that the group in question will be adapted such that

- its feeding rate and hence its growth rate as well are higher in that habitat than in others;
- its survival rate is higher in that habitat (because the predation rate is higher in non-preferred habitat);
- its movement rate is higher outside than within good habitat.

All three of these choices imply different mechanisms for defining what is good and bad habitat. Users can determine (through the <u>Dispersal</u> form) the relative strength of these mechanisms.

However, the first job is to assign groups to habitats, which is easy to do if the habitats have been defined in terms of parameters that are themselves easy to determine.

Note organisms at the upper trophic levels, due to their high mobility will tend to 'prefer' a wide range of habitats rather than a specific one.

Also note that definition of habitat in Ecospace usually includes the entire water column, from the surface to the bottom. Thus, while 'rockfishes' will tend to be limited to hard bottoms, and burrowing bivalves to soft bottoms, small coastal pelagics, which occur higher up in the water column, may 'prefer' hard and soft bottom habitats, as long as both are coastal.

Thus, if the habits defined are 'shallow' and 'deep', assigning the groups to their preferred habitat simply consists of clicking 'shallow' for model groups known to limit themselves to shallow waters, and conversely for 'deep'.

Note, however, that organisms assigned e.g. to 'deep' waters will usually consume preys also assigned to 'deep' waters, and conversely for shallow water organisms. Only groups assigned to 'All' habitats can be expected to feed indiscriminately in all habitats.

In the special case of multi-stanza groups, it will be appropriate, in most cases, to assign the juveniles to one or several inshore/shallow habitats, out of reach of the often 'cannibalistic' adults, assigned to habitats that are deeper, or further offshore.

								Set:	
Group \ habitat #		All	mud bottom	seagrass	deep water	low salinity	Ecospace area	Ecopath area	
19	18+ Mullet						1.000	1.000	
20	Mackrel 0-3						1.000	1.000	
21	Mackrel 3+						1.000	1.000	
22	Ladyfish 0-10						1.000	1.000	
23	Ladyfish 10+						1.000	1.000	
24	Jacks						1.000	1.000	
25	Bay Anchovy						1.000	1.000	
26	Pin Fish						1.000	1.000	
27	Spot						1.000	1.000	
28	Silver Perch						1.000	1.000	
29	Scaled Sardine						1.000	1.000	
30	Mojarra						1.000	1.000	ſ
31	Threadfin Herring						1.000	1.000	
32	Manhaden						1.000	1.000	
33	Menidia (silverside)						1.000	1.000	
34	Catfish						1.000	1.000	
35	Bumper						1.000	1.000	
36	Caridan Shrimp						1.000	1.000	
37	Shrimp						1.000	1.000	
38	Stone Crab						1.000	1.000	
39	Blue Crab						0.798	1.000	
40	Cyprinodontids						0.798	1.000	
41	Poecilids						0.798	1.000	
42	Pigfish						0.798	1.000	
43	Gobies						0.798	1.000	
44	Ravs						0.376	1.000	
45	Benthic Invertebrates						1.000	1.000	
46	Macro Zooplankton						1.000	1.000	
47	Micro Zoolplankton						1.000	1.000	
48	Infauna						1.000	1.000	
49	Attached Microalgae						1.000	1.000	
50	Sea Grass						1.000	1.000	
51	Phytoplankton						1.000	1.000	
52	Detritus						1.000	1.000	
53	Habitat area	1.000	0.541	0.256	0.119	NaN	1.000	1.000	

Figure 10.7 Assign groups to Ecospace habitats. The 'Ecospace area' is calculated from the basemap, while the 'Ecopath area' is the habitat area fraction assigned to the individual group in the underlying Ecopath model. When Ecospace shows initial imbalance at the start of a simulation it my be because of inappropriate distribution of habitat areas, and a more careful allocation if often required to improve model behaviour.